Fifth-order evolution equations describing pseudospherical surfaces
نویسندگان
چکیده
منابع مشابه
Smoothing of a Class of Fifth Order Model Evolution Equations
Solutions of a class of fth-order model evolution equations corresponding to initial data in relatively weak function spaces are shown to exhibit a smoothing eeect of the type of Kato. These models include the next hierarchy of the Korteweg-de Vries equation. It is interesting to observe that conditions that guarantee smoother solutions in some of these weaker function spaces are exactly the on...
متن کاملPseudospherical surfaces on time scales
We define and discuss the notion of pseudospherical surfaces in asymptotic coordinates on time scales. Two special cases, namely dicrete pseudospherical surfaces and smooth pseudosperical surfaces are consistent with this description. In particular, we define the Gaussian curvature in the discrete case. Mathematics Subject Classification 2000: 53A05, 39A12, 52C07, 65D17. PACS Numbers: 02.40.Hw,...
متن کاملLocalized Induction Equation and Pseudospherical Surfaces
We describe a close connection between the localized induction equation hierarchy of integrable evolution equations on space curves, and surfaces of constant negative Gauss curvature. To appear in Journal of Physics A: Mathematical and General PACS numbers: 03.40.Gc, 02.40.+m, 11.10.Lm, 68.10-m 2 RON PERLINE
متن کاملTravelling Wave Solutions for the KdV-Burgers-Kuramoto and Nonlinear Schrödinger Equations Which Describe Pseudospherical Surfaces
متن کامل
Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations
We design a class of Weighted Power-ENO (Essentially Non-Oscillatory) schemes to approximate the viscosity solutions of Hamilton-Jacobi (HJ) equations. The essential idea of the Power-ENO scheme is to use a class of extended limiters to replace the minmod type limiters in the classical third-order ENO schemes so as to improve resolution near kinks where the solution has discontinuous gradients....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2010
ISSN: 0022-0396
DOI: 10.1016/j.jde.2010.05.016