Fifth-order evolution equations describing pseudospherical surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing of a Class of Fifth Order Model Evolution Equations

Solutions of a class of fth-order model evolution equations corresponding to initial data in relatively weak function spaces are shown to exhibit a smoothing eeect of the type of Kato. These models include the next hierarchy of the Korteweg-de Vries equation. It is interesting to observe that conditions that guarantee smoother solutions in some of these weaker function spaces are exactly the on...

متن کامل

Pseudospherical surfaces on time scales

We define and discuss the notion of pseudospherical surfaces in asymptotic coordinates on time scales. Two special cases, namely dicrete pseudospherical surfaces and smooth pseudosperical surfaces are consistent with this description. In particular, we define the Gaussian curvature in the discrete case. Mathematics Subject Classification 2000: 53A05, 39A12, 52C07, 65D17. PACS Numbers: 02.40.Hw,...

متن کامل

Localized Induction Equation and Pseudospherical Surfaces

We describe a close connection between the localized induction equation hierarchy of integrable evolution equations on space curves, and surfaces of constant negative Gauss curvature. To appear in Journal of Physics A: Mathematical and General PACS numbers: 03.40.Gc, 02.40.+m, 11.10.Lm, 68.10-m 2 RON PERLINE

متن کامل

Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations

We design a class of Weighted Power-ENO (Essentially Non-Oscillatory) schemes to approximate the viscosity solutions of Hamilton-Jacobi (HJ) equations. The essential idea of the Power-ENO scheme is to use a class of extended limiters to replace the minmod type limiters in the classical third-order ENO schemes so as to improve resolution near kinks where the solution has discontinuous gradients....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2010

ISSN: 0022-0396

DOI: 10.1016/j.jde.2010.05.016